
In , there are some options to configure the security of SOAP and Setup > System > Manage Web Services
REST Web Services. At the top of the page, you can Enable WS if they aren't activated, or Disable or Re-enable
WS if they are currently enabled.

The next section controls group permissions and IP address restrictions for SOAP, followed by the same settings
for REST. First, you can select the groups that are permitted to use the interface. If a user does not belong to a
group that is selected in these drop-down lists, they are restricted with a 403 access error, even if they have create
/edit/delete permissions on the affected records.

Four allow you to define a set of IP addresses for SOAP and REST blacklisting and whitelisting:global variables

Security: REST IP Blacklist

Security: REST IP Whitelist

Security: SOAP IP Blacklist

Security: SOAP IP Whitelist

IP addresses should be comma separated, and address ranges should be indicated with a dash.

The REST client application must log in using valid credentials for a knowledgebase. Agiloft verifies these
credentials and if valid creates an HTTP session that the client can use in subsequent calls.

Every REST call should contain the user’s credentials in the form login={login}&password={password}.

API Security

Group Permissions and IP Restrictions

Example

10.168.6.102, 10.169.7.132-10.169.7.150

REST Authentication

https://wiki.agiloft.com/display/HELP/Global+Variables+List

1.

If you are in a production system and do not wish to expose user credentials as plain text, you can avoid passing
the login or password in REST calls by using POST instead of GET to pass the parameters in the request body.
POST requests support the /ewws/EWRead, /ewws/EWSelect, /ewws/EWCreate, /ewws/EWUpdate,

 methods. For more information on constructing a REST request via POST, see /ewws/EWDelete URL
. Conventions

You can use JSON Web Tokens (JWT) to retrieve data using an access token instead of using login credentials
each time. For more information, see .REST - Login

Call permissions are based on the authorized user's permissions in the Agiloft KB, so it will return only the data that
the API user has access to. Please note that in addition to the user's group permissions, it is necessary to grant
REST access to the group via > > > Any Setup System Manage Web Services Groups allowed for REST.
operation that the user doesn't have access to will be rejected.

SOAP and REST calls can be encrypted by system admins. For example, consider a call to read data from a
contract record: http://\{localhost}/ewws/EWRead?$kb=KBNAME&$table=contract

Omit the variables likely to change, such as the ID value, from the string.

Go to .Setup > Access > Automatic Login Hotlinks

Passing Credentials in the Parameter Body with
POST

JSON Web Tokens

Access Permissions

Encryption

https://wiki.agiloft.com/display/HELP/REST+Interface#RESTInterface-URLConventions
https://wiki.agiloft.com/display/HELP/REST+Interface#RESTInterface-URLConventions
https://wiki.agiloft.com/display/HELP/REST+-+Login

2.

3.

Enter the string constructed above into the input box, select an expiration time, and click Encrypt.

Encrypt Hotlink inputs

The encrypted URL can be used in the same way as the standard URL, and parameters can be added to it in
the standard way.

The system trusts the encrypted URL, so no password is required.

Though stateless in appearance Agiloft Web Services are stateful by nature. A certain set of information can be
shared as a "session" between multiple calls and there is usually no good reason to re-create it on every call.

A typical integration scenario obeys the pattern of "login, do multiple calls, logout".

The statefulness is supported via a widely used pattern of obtaining a session token first via the EWLogin method
and explicitly passing it with each subsequent call performed.

Once the session is finished it is advisable to destroy the session with a call to EWLogout to ensure proper freeing
of server resources.

For more information, see . https://nordicapis.com/defining-stateful-vs-stateless-web-services/

The SOAP API handles a series of failed logins in the same fashion as the GUI, i.e. it will produce an error if the
account becomes blocked due to multiple unsuccessful login attempts.

Example

{encrypted URL}&$lang=en&id=450

Statefulness

Failed Logins

SSL Support

https://nordicapis.com/defining-stateful-vs-stateless-web-services/
https://stark.agiloft.com/ewws/EWRead?$genhotlink=TRZKtRz7cGTuruXognStMK4T5gpb9GfBl7JQwBe3el6/rlvjQ22MUVgurcklFf6WLD0HsfZorhUZvofPm88Mr0cHWzY74J2T8QHLaVAkYGJBGpQ/RbjlFx1jqNYlTt0Z28GvBnEdDdDWX9jqZm3BG6KuzD9pxrDelcshKYf0QiawkxqsGAq8RXzw1xzg8q/71fkQUW/ZFcC9z5TFIJd9diQfzCip4qQVBxJv3mp6qTLz7aitOb0Elk5X9YjhEhEsSME91hutvtkfdKJCMY46hcmRZiNdpR/xKsR5y5pVMGiZlQ7wEJcRaq5tZ7Un5QOeMKTc784fBp3HJVYBDfm2R/YRuoZd6AZMa2kZmMoF1QaaG3SnB5Usnztj9o0JCOq7wmQixyyWA7oefCsSrnc0aqeW2vWohvQDcXNvkroS7Tr7DFHk95ZEain1ez8C6Ts4q2VFwQd/c+Zz9o10/dbuGUQXxQWFb8TU/ylIPpxGHaD3xG9CmioBnVBlT5x+rnte1wwxy214a6L24MuVwIyuXlqLm/pfmijz6h65EL9FF7qGM2Pb8F6Le0G/Ax/7VQWMOqy+W3U5/DRs4ro3CU8qe7VXp0oUrNIqeAr9yABxrrjNCvVCuwVJoo1YHtQFXZ5FYSABtl5YsQESiYdsGwYsRueKuCwjjqv/rbKFQ9BbWpk=&$genproject=Demo4JasonG&$lang=en&id=450

The Agiloft SOAP API relies on the underlying application server and front-end web server (if present) for SSL
support.

	API Security

