
Agiloft supports REST-style invocations that correspond to CRUD operations: , , , .Create Read Update Delete

For CRUD operations, two invocation styles are supported:

HTTP methods

GET/POST methods

Invocations that map directly to HTTP methods are listed in the second column below. The fallback GET/POST
methods listed in the third column are generally used for organizations that don't support all HTTP methods.

Operations for both invocation styles are detailed in the table below. REST API calls are documented further in their
individual, linked pages. Standard API calls are also included in your KB's documentation. REST API Swagger API
calls specifically related to outbound webhooks are documented on the page.Webhooks

Operation Supported
HTTP Methods

REST Endpoint Returns

Create GET/POST /ewws/EWCreate ID of the newly created record

Read GET/POST /ewws/EWRead Encoded record information

Update GET/POST/PUT /ewws/EWUpdate Encoded record information after update

Delete GET/POST
/DELETE

/ewws/EWDelete Does not return anything

Select GET/POST /ewws/EWSelect A list of record identifiers and a length of that
list

Supports limited SQL select functionality.
Only available via GET/POST

Login GET/POST /ewws/EWLogin A session token, expiration time, and
authentication scheme

Logout GET/POST /ewws/EWLogout Does not return anything

Search GET/POST /ewws/EWSearch Supports saved search and ad hoc queries

Attach PUT /ewws/EWAttach Adds attachment

RemoveAttached GET/POST /ewws
/EWRemoveAttachment

Does not return anything

RetrieveAttached GET/POST /ewws/EWRetrieve Retrieves attachment

AskQuestion GET/POST /ewws/EWQuestion Returns answer to text question using
Genius™ from Cognizer

Lock GET/PUT/DELETE /ewws/EWLock Provides ability to check, lock, and unlock
the lock status of a record

REST Interface

https://wiki.agiloft.com/display/HELP/REST+-+Create
https://wiki.agiloft.com/display/HELP/REST+-+Read
https://wiki.agiloft.com/display/HELP/REST+-+Update
https://wiki.agiloft.com/display/HELP/REST+-+Delete
https://wiki.agiloft.com/display/HELP/Webhooks
https://wiki.agiloft.com/display/HELP/REST+-+Create
https://wiki.agiloft.com/display/HELP/REST+-+Read
https://wiki.agiloft.com/display/HELP/REST+-+Update
https://wiki.agiloft.com/display/HELP/REST+-+Delete
https://wiki.agiloft.com/display/HELP/REST+-+Select
https://wiki.agiloft.com/display/HELP/REST+-+Login
https://wiki.agiloft.com/display/HELP/REST+-+Login#RESTLogin-JWTLogoutOperations
https://wiki.agiloft.com/display/HELP/REST+-+Search
https://wiki.agiloft.com/display/HELP/REST+-+Attach
https://wiki.agiloft.com/display/HELP/REST+-+Remove+Attachment
https://wiki.agiloft.com/display/HELP/REST+-+Retrieve+Attachment
https://wiki.agiloft.com/display/HELP/REST+-+Ask+Question
https://wiki.agiloft.com/display/HELP/REST+-+Lock

1.

2.

3.

4.

5.

a.

b.

AttachInfo GET/POST /ewws/EWAttachInfo Returns info about the attachments of a
record

You can access detailed REST documentation with directly in your KB at Swagger OpenAPI Setup > System >
. This code repository includes entries for the tables and fields specific to your system, View REST documentation

and offers you the ability to test an API call with specified . parameters once you obtain authorization Testing API
calls should always be performed in test KBs, rather than a production environment. If you have no other choice but

.to use the production environment, use extreme caution

You can download a comprehensive from the right-hand side of the page by clicking Open API JSON file
. This file is useful for importing into Postman.Download Open API JSON

You need to go through an authorization process before you can test API calls. Follow the steps below to complete
this process:

In your test KB, navigate to . Setup > System > View REST documentation

Under Schemes, select HTTPS.

Open the General section and click POST /login.

Click Try It Out.

Replace the "string" values in the parameters.

For password and login, enter the user that you are going to use for your REST calls, which is

commonly just a user created specifically for this purpose. This u must be in a REST-enabled ser

Group.

For KB, enter the name of the KB as it appears in the top right-hand corner of your KB next to the

Help icon.

OpenAPI

Authorization

https://wiki.agiloft.com/display/HELP/REST+-+AttachInfo
https://swagger.io/

5.

c.

6.

7.

8.

9.

10.

For language, . Language codes are enter the language code your KB uses generally two lowercase

. For example, English would be "en".letters

Click Execute.

Scroll down slightly to the Server response section and copy the access token. Do not include the quotation

marks.

Scroll back up to the top of the page and click Authorize.

Paste the access token into the Value field in the window that appears.

Click Authorize to complete the authorization process.

Now, you can begin to test API calls in the KB you just . authorized You only need to authorize once, but will need to
log in again after the default 15 minute expiration .timer

https://www.oracle.com/java/technologies/javase7locales.html

1.

2.

3.

4.

5.

Now that you are authorized, you can test commands in the KB using various methods of POST, GET, DELETE,
and PUT.

Below are example steps for testing a call. This examples uses PUT to update a record in the Person table.

Click the table you'd like to test calls against.

Click PUT /contacts/{id}.

Click Try it Out.

In the body field, you'll see a list of the parameters for a Person record. Find the fields you'd like to update,

and replace the "string" value with the new data. ID is a required field because it indicates which record will

receive the update. You can delete any fields you do not want to update with this call.

Click Execute.

The following conventions apply to how URLs are constructed for different operations.

KB names and table names are case sensitive. To find the correct styling for your table, go to , Setup > Tables
select your table, click Edit, and look for the Logical Table Name. Use the same text and format of the Logical Table
Name when referencing that particular table.

REST

Use the code block below for REST. However, you should omit when using Create (POST); creating a new /{id}

record does not require a reference to an existing one.

/ewws/REST/{kbName}/{table}[/{id}]?$login={login}&password={password}&lang={lang}
&...

GET/POST

For the fallback GET/POST interface, use the following:

Testing an API Call

URL Conventions

/ewws/{operation}?$KB={kbName}&$table={table}&$login={login}&password={password}
&lang={lang}&...

The parameters of the POST request can be inserted into the body of the request to conceal the user credentials.

Name/value pairs

The URL string should contain the parameter name/value pairs, as per operation specification:

Return values come in an encoded form suitable for applying the JavaScript operations. Extended eval()

characters (like ö) are returned in a UTF-encoded format.

Return values can be accessed from local variables. Fields with empty values are not returned.

To avoid interfering with variables that may already exist in the client script or document, all table column names in
the variables that result from the call are prefixed with . As such, what is returned is escaped eval() EWREST_

using JavaScript rules. The content type of the field is irrelevant for the escaping.

EWREST_company_name='Agiloft';
EWREST__1794_full_name=' agiloft.com Admin';
EWREST_website_url=' https://www.agiloft.com'
EWREST_date_updated=' 21 8 06 15:18:43 PM';
EWREST_id=' 21';

Example

GET {server name}/ewws/REST/Demo/Company
/123?$login=user&$password=123&$lang=en

Or

POST {server name}/ewws
/EWRead?$KB=Demo&$table=Company&id=123&$login=user&$password=123&$lang=en

Return Values

You may want to consider using a JSON decorator to receive a JSON formatted stream instead, since
JSON has more readily available parsers. Here is its syntax in a REST call:

https://<hostname>/ewws/EWRead/.
json?$KB=KB&$table=<table>&$login=admin&$password=<pwd>$lang=en&id=<id>

In this case the return result would look like:

Each call via the REST interface has a delay inserted after the operation has completed.

The delay is set to one second by default and is configurable via the global .variable Web Services Delay (WSDelay)

Delays are important because:

An operation on a record may invoke rules and other functions, which need to be allowed enough time and

resources to complete.

Client applications could mistakenly overuse web services, resulting in a flood of requests.

Use the Login and Logout operations to secure sessions initiated by REST.

Login: Use this operation to authenticate KB credentials and return a token, which can then be used by

following requests to avoid including login credentials in request URLs. Input the KB login and password as

parameters, and the operation returns a token, expiration time, and authentication scheme to the client. The

token can then be used in an Authorization request header, prefixed by the authentication scheme, instead

of including the login and password parameters in following requests. By default, the Bearer authentication

scheme is used, and the token expiration time is 15 minutes. You can adjust the expiration time by creating a

token_expires_in global variable and setting the number of minutes, up to 60.

Logout: Use this operation to terminate a session created by the Login operation. This terminates the

session associated with the token passed in the Authorization header.

Examples

These examples show the process of creating the token, placing it in the request header, and then terminating the
token session. With the token in the header, you can use functions like Search without passing in a login and
password in the URL.

Usage Headers Example Text Response

Login
request

POST https://server/ewws/EWLogin?
$login=user&$password=passwd&

HTTP/1.1 200 OK

{"success":true,"message":"","result":{...,"company_name":"Agiloft","
_1794_full_name":"Agiloft System","id":21}}

Delays

Security

https://wiki.agiloft.com/display/HELP/Global+Variables+List
https://server/ewws/EWLogin?$login=user&$password=passwd&$KB=Demo&$lang=en
https://server/ewws/EWLogin?$login=user&$password=passwd&$KB=Demo&$lang=en

$KB=Demo&$lang=en {" ":"access_token
eyJhbGciOiJIUzI1NiJ9….","
refresh
_token":"…","
expiration_time_unit":"
minute","expires
_in":5,"

":"authentication_scheme
Bearer "}

Functional
request

Authorization: Bearer
eyJhbGciOiJIUzI1NiJ9….

GET https://server/ewws/EWSearch?
$KB=Demo&$table=body&$lang=en&

...field=id&field=text&field=body&query=

Refresh
token

Authorization: Bearer
eyJhbGciOiJIUzI1NiJ9….

POST https://server/ewws
/EWLogin?$KB=Demo&$lang=en&refresh_token=xYZsk
...

HTTP/1.1 200 OK
{" ":"access_token
jkShbGciOiJIUzI1NiJ9….","
refresh

_token":"…","
expiration_time_unit":"
minute","expires
_in":5,"

":"authentication_scheme
Bearer "}

Logout
request

Authorization: Bearer
eyJhbGciOiJIUzI1NiJ9….

GET https://server/ewws/EWLogout HTTP/1.1 200 OK

The following conventions are in place to encode aspects of a typical Agiloft knowledgebase:

Simple fields

Simple fields can be filled directly by setting the value for them.

... &first_name=John&last_name=Doe&...

Choice fields

Choice fields are encoded directly with their text values as seen in the GUI.

...&country=USA&...

Data Encoding

https://server/ewws/EWLogin?$login=user&$password=passwd&$KB=Demo&$lang=en
https://server/ewws/EWSearch?$KB=Demo&$table=body&$lang=en&field=id&field=text&field=body&query=
https://server/ewws/EWSearch?$KB=Demo&$table=body&$lang=en&field=id&field=text&field=body&query=
https://server/ewws/EWSearch?$KB=Demo&$table=body&$lang=en&field=id&field=text&field=body&query=
https://server/ewws/EWLogin?$KB=Demo&$lang=en&refresh_token=xYZsk
https://server/ewws/EWLogin?$KB=Demo&$lang=en&refresh_token=xYZsk
https://server/ewws/EWLogout

Multi-choice fields

Multi-choice fields are encoded as multiple key/value pairs.

... &contactMethod=phone&contactMethod=email&...

Date, date-time and time fields

Date, date-time and time fields can be encoded with any of 3,275 formats currently supported. The system
evaluates the possible formats sequentially and stops when parsing if one of the formats succeeds.

Please refer to the following document to see the list of supported date-time formats: datetime.txt

Elapsed time fields

These can be encoded as "days:hours:minutes:seconds" e.g "0:1:35:15"6

Linked field relationships

If the linked field allows independent they can be assigned to the columns in the main table:values,

...&company_name=Agiloft&...

To create a link based on the values of imported columns, you a colon can use Query By Example, expressed with
':' qualifier.

Example values have to be provided for one or more of the imported columns in either of the following ways:

...&company_name=:Agiloft&...

Or

...&company_name=Company:Agiloft&...

For ad hoc in the call, choice values should be addressed via the ID values obtained from queries Select
.GetChoiceLineId

https://wiki.agiloft.com/download/attachments/18023178/datetime.txt?version=1&modificationDate=1532440937432&api=v2
https://www.ibm.com/docs/en/qmf/11.1?topic=cics-query-by-example
https://wiki.agiloft.com/display/HELP/REST+-+Select
https://wiki.agiloft.com/display/HELP/REST+-+GetChoiceLineId

The is required if the link type is " ", name of the original table that contained the field single field from multiple tables
but may be omitted in the case of a .single donor table

If the value contains the colon ':' symbol or the question mark '?' symbols, they have to be escaped with backward-
slash "\" in the following way:

...&company_url=Company:http\://www.example.com&...

For more complex queries, possibly including sub-selects, aggregative functions and columns from the donor table
that are not imported into the target, you can use a SQL query, expressed with a question mark '?' qualifier. The
"where" clause follows the qualifier for the query that will be run against the donor table. The columns in the query
have to be referred with their database names rather then logical ones.

Multiple values for the linked field

These are encoded as multiple key/value pairs:

...&company_name=Company:Agiloft& company_name=Company:SaaSWizard&...

File and image fields

An example of this field is an Attached File field.

The REST interface accepts files in POST requests when used with encoding.enctype="multipart/form-data"

The name of the form field should match the name of the file or image field. Additionally a field fieldName$overwrite
can be specified with any value to instruct the REST interface to override the current data in the file or image field,
rather than add.

Application clients can use operation instead with PUT HTTP method.REST - Attach

Example

To look for Employee records where the Company currency is EUR, and not in the linked set, use the
following search:

https://localhost:8080/ewws
/EWSearch?$login=admin&$password=qwerty&$lang=en&$table=contacts.
employees&$KB=Demo&query=_1576_company_name0=Company?currency~='EUR'

https://wiki.agiloft.com/display/HELP/REST+-+Attach

Decorators

REST calls allow use of three decorators:

Asynchronous decorator: These can be applied to EWCreate, EWUpdate and EWDelete calls to do "fire-
and-forget" type of call. They should used if the results normally returned by an operation are not important
to the caller e.g. a scenario when a lot of records have to be created in the backend.

Use

/ewws/async/EWCreate?...
or
/ewws/EWCreate/.async?...

: These cRedirect decorator an be applied to all calls to have a HTTP redirect issued depending on the
success of the operation and are useful when integrating with web sites. Please note the page to which
redirect is performed will NOT receive any return data. These calls require two parameters to be specified:

 and - for redirecting in case of successful operation and in case of error respectively. Both $exiturl $errorurl
parameters should be absolute URLs and URL encoded if necessary.

Use

/ewws/redirect/EWCreate?...&$exiturl=http%3A%2F%2Fwww.google.
com&$errorurl=http%3A%2F%2Fwww.google.com%2F404
or
/ewws/EWCreate/.redirect?...&$exiturl=http%3A%2F%2Fwww.google.
com&$errorurl=http%3A%2F%2Fwww.google.com%2F404

JSON decorator: produces a JSON formatted stream. If you apply JSON formatting, you can optionally
include the parameter err_code_resp=1 to receive specific response codes, rather than the default behavior
of receiving code 200 in response.

Use

/ewws/EWRead/.json?...

Please note that decorators can be chained. In the case of chaining they are applied from left to right.

Use

/ewws/redirect/EWCreate/.async?...&$exiturl=http%3A%2F%2Fwww.google.
com&$errorurl=http%3A%2F%2Fwww.google.com%2F404
/ewws/async/EWCreate/.redirect?...&$exiturl=http%3A%2F%2Fwww.google.
com&$errorurl=http%3A%2F%2Fwww.google.com%2F404
/ewws/redirect/async/EWCreate?...&$exiturl=http%3A%2F%2Fwww.google.
com&$errorurl=http%3A%2F%2Fwww.google.com%2F404

/ewws/async/redirect/EWCreate?...&$exiturl=http%3A%2F%2Fwww.google.
com&$errorurl=http%3A%2F%2Fwww.google.com%2F404

	REST Interface

