
The Agiloft synchronization subsystem provides facilities for automatic synchronization between Agiloft tables and
corresponding records in some external system. Synchronization can be bidirectional or unidirectional in either
direction.

Syncing can be used to transmit all the functionality that an external system has in common with Agiloft. For
example, it allows the user to define table and field mappings, handle the communication of the data and determine
which records need to be updated between each system. Each external system type also needs an external system
Adaptor (ESA) to handle its unique characteristics. The ESA is responsible for implementing functions such as "List
the available tables" "List the fields in a given table", "Create, Replace, Update, Delete a record". It is also possible
to plug in a fully custom, third party ESA implementation and to share ESAs that you create with a particular system
type.

Agiloft comes with a prebuilt ESAs for common systems and new ones can be created by customers in Java or their
choice of language. If the customer develops the ESA in Java, it can be linked with the Remote Proxy that actually
communicates with the Sync subsystem. If the customer develops the ESA in some other language, it
communicates with the Remote Proxy using standard I/O streams.

To be synchronized with Agiloft, an external system must have these properties:

It must be possible to obtain some kind of modification timestamp for each record. Typically this timestamp is

held in the record itself, but this is not absolutely necessary.

Record IDs should not be changed or at least there must be a way to know any record ID as it was on the

last sync. Record IDs can be "remapped" on a sync, but the old ID must be known to the ESA. This is used

to track record matches.

Records from the external system, as presented to Sync by the ESA, must be grouped by structures, which

are mapped precisely to Agiloft types or Tables, such as Contact/Employee. A structure can be a table, a

folder or anything else that logically groups records in the external system. Within a given structure, external

records must use the same set of field mappings.

A given Agiloft table can be synced with multiple external system and it is not necessary for all fields to be mapped.
Existing ESAs provide support for synchronization with the File Directory, Microsoft Exchange, QuickBooks, Excel
and other systems. The synchronization process is based on comparing record timestamps in the Agiloft KB with
record timestamps in the external system. For example, if a synchronization was run on Wednesday and is next run
on Friday, it looks for all the records changed in one or both systems since Wednesday and propagates those
updates to the other system. At the end of a synchronization process, both systems have matching data. Creation
of new records or deletions may also be carried over to the other system if configured to do so.

External System Synchronization

The term is also used to refer to syncing entity sets between KBs. With entity sets, rather than syncing sync
record data to an external system from the KB, you can instead sync KBs so that they contain the same
tables, fields, and other structural elements. This is primarily useful when structural changes are made in a
development KB, or testing KB, and those changes are moved to the production KB after thorough testing.
For information about this type of sync, see .Pushing Changes to Production

https://wiki.agiloft.com/display/HELP/Pushing+Changes+to+Production

Agiloft Agiloft Inc/ Agiloft Installation

Sync Agiloft Synchronization Sub-system

XML Extensible Markup Language. See http://www.w3.org/xml/

external
system

external system - separate from Agiloft

STDIO Standard Input/Output streams of console

HTTPS Secure Hypertext Transfer Protocol

URL Universal Resource Locator

URL Encoding Encoding as prescribed in http://www.w3schools.com/TAGS/ref_urlencode.asp

NAT Network Address Translation

CL Command Line

ESA external system Adapter

ESA Proxy Interface between the Agiloft sync subsystem and the ESA.

JDK Java Development Kit

REST Representation State Transfer web service. See: http://docs.oracle.com/javaee/6/tutorial/doc
/gijqy.html

RPC Remote Procedure Call

Agiloft supports several synchronization options. The choice of which method is most appropriate depends upon
your particular needs.

The following table summarizes these options:

Sync
Option

Description Pros and Cons

Sync Terminology

Synchronization Options

http://www.w3.org/xml/
http://www.w3schools.com/TAGS/ref_urlencode.asp
http://docs.oracle.com/javaee/6/tutorial/doc/gijqy.html
http://docs.oracle.com/javaee/6/tutorial/doc/gijqy.html

Web
Services
/REST

Used for general purpose, request-response integration
with remote or local systems.

Pros:

The knowledgebase can be seen as
an ordinary source, like a database;
web services are now supported by
virtually any platform.

Cons:

Inflexible: the program is usually

hard-coded and must be manually

altered to add mappings for new

tables or change existing

mappings.

Low-level: extensive coding is

required to provide reliability in

case of connection failures,

feedback on the Sync status, etc.

Moderate performance.

Example

A website PHP script, which needs to check that
there is a People table record in the Agiloft
knowledgebase for some user email for a
registration check.

https://wiki.agiloft.com/display/HELP/REST+Interface
https://wiki.agiloft.com/display/HELP/REST+Interface
https://wiki.agiloft.com/display/HELP/REST+Interface

ESA Best used to synchronize record copies between an Agiloft
KB and an external system. When a record is modified on
one system, it is automatically updated in the peer system,
either immediately, or on a schedule, or by a manual sync
request.

To achieve this functionality, the ESA must be able to
connect to the Agiloft sync subsystem, and support Create
/Read/Update/Delete (CRUD) operations in the external
system, which can be remote.

Pros:

The ESA is high-level. It only

needs to support CRUD operations

in the external system and

understand that system's data

model.

There is no need for the ESA

developer to understand anything

about Agiloft or even have access

to the production KB.

Flexible. Once an ESA has been

written, it can be used with other

Agiloft KBs without modification.

The table and field mappings can

be changed by the Agiloft

administrator without any code

changes to the ESA.

Developing an ESA is relatively

easy because much of the work,

such as comparing modification

times, conflict resolution, and error

processing, is done in the sync

subsystem.

Cons:

The external system must actually

store records to sync with and

these records must have a clearly-

defined ID and timestamp.

Moderate performance unless the

method to process multiple records

in batch mode is implemented.

https://wiki.agiloft.com/display/HELP/ESA+Developer+Guide

Custom
Scripts

Custom scripts can be run by Agiloft upon some KB-
defined conditions, such as when modifying a record.
These scripts are executable and there is prebuilt support
for Perl and Java scripts which are on the Agiloft server.
Run conditions can be quite complex and can be fully
integrated with a workflow set up in the KB.

Pros:

Fully integrated with workflow and

business rules.

Very easy to write, easy access to

record data.

Support for both reading and

writing.

Cons:

Data access is limited to the

individual record provided by the

business rule or workflow.

The structure with which an Agiloft table can be synchronized may be a table, a folder or anything else which
logically groups records, and can be presented or derived by the ESA from the external system. All records within a
single structure must have the same set of fields.

As well as records, it is also possible to synchronize relations between external records. Those are used to update
Linked Fields in Agiloft.

Sync also supports Collection fields, which are something in between normal data field, holding single value and a
relation to other table. Collection fields hold multiple values, which might be complex objects, with multiple fields.
These objects can be mapped to a separate Agiloft table, just as related records for relations. But, unlike a relation,
which treats all records independently, these records are treated as a part of their master record. If any of them is
modified, a master record is considered to be modified.

In summary, the Sync Configuration Wizard creates a record in Agiloft holding:

The external system to sync with

The tables to be synchronized and their corresponding "Structures"

The fields to be synchronized within a Table-Structure pair

The relations to be synchronized

The directions - Agiloft to XS, XS to Agiloft or both - of updating

The command that launches the ESA

The "identifier" fields Sync uses to identify matching records

Example

Post data into Active MQ and generate a file in the
shared network folder when a "Helpdesk Case"
record is put into a "Scheduled" state and a staff
person is assigned to work on the record.

Scope

Sync Configuration

https://wiki.agiloft.com/display/HELP/Custom+Scripts
https://wiki.agiloft.com/display/HELP/Custom+Scripts

If a Sync Configuration is modified after it has been run, all previous peering of Agiloft records with XS records is
lost, and the next sync is treated as an entirely new synchronization.

For every record in an Agiloft table or XS structure subject to a new sync, and for every such record created since
the last sync, a corresponding record in the other system is determined, if it exists, by matching the Identifying fields
- checked in the Field Mapping Wizard - from the two systems. If there's no such record, one is created. The two
records are held by Sync in an Agiloft ID - XS ID pair, thus peering the Agiloft record with the external record.
Logically, Sync treats the pair as a single data record, having Agiloft and external views.

If a new record is created manually in both systems, the Identification process prevents Sync from duplicating them.

There are two algorithms for matching:

Best match: If there are 3 identifying fields, Sync first tries to match all 3. If there is no match, it tries

matching by any 2 of 3. If there is still no match, it matches by any 1 of the 3 fields.

Exact match: If there are 3 identifying fields, Sync first tries to match all 3. If there is no match, it creates a

new record.

The algorithm is selected in the Field Mapping GUI - Use strict match for identification checkbox. The choice of
exact matching may prevent matching if any identifying field has non-unique values.

After the pairing is established, it isn't cleared until either one of these conditions is met:

The records are deleted in both systems

The peering information is reset by using the Reset Records Peering button on the General tab of the Sync

Configuration edit GUI

There are several similar options that control how the External Sync Wizard handles the direction of
synchronization, and specify how the system should handle conflicts that arise when the same records are updated
in both systems. For example, the General tab of the External Sync Wizard allows you to define the direction of the
sync as two-way, or only updating Agiloft or the external system.

Record Peering

Matching

Directional Synchronization and Conflict
Resolution

Additionally, you can define how the synchronization handles record conflicts between the systems. If you need to
map multiple entities from one system to a single entity in the other you can enable multi-to-multi table mapping for ,
the sync configuration, but this limits the sync to one-way. You can use multi-to-multi table mapping and sync in
both directions by creating two separate one-way sync configurations, one syncing from Agiloft to the external
system, and one going in the other direction.

Two-way sync: Allows mapping between objects in both directions - from Agiloft to the external system,

and the other way around. Records of the mapped tables synchronize in both systems. This option is

disabled if you select Allow Multi to Multi Table Mapping.

Update Agiloft only: Allows records to be updated in Agiloft with values from the external system.

Update External System only: Allows records to be updated in the external system with values

from Agiloft.

When there are two conflicting files, the system always chooses to keep one and discard the other. This can be
based on the timestamps in the Last Updated Field for each record, or on the system which has been specified to
take precedence. However, it is possible to specify the fields which should be overwritten in the Field Mapping Tab.
Conflict handling in the General tab works in this way:

This system should take precedence: If both records have been changed to different values,
the Agiloft record is updated.

External System should take precedence: If both records have been changed since the last sync to
different values, the external record is updated.

Directions

Conflicts

Example

Last sync was performed at 07:39am

Last modified time of Agiloft record (e.g. Agiloft_1.doc): 07:45am

Last modified time of the external system record (e.g. Agiloft_10.doc) at Salesforce 07:47am

The sync is run at 07:52am.

In this case, the record with Agiloft values (Agiloft_1.doc) takes precedence.

Take the most recent record: If both records have been changed since the last sync to different values, the
most recently modified record is updated.

Duplicate records: The system creates a duplicate of each record with both external system
and Agiloft values.

In the Field Mapping wizard, the Table Update Type options define the sync direction for that specific table. The
available options here are dependent on the sync direction. For example, if sync direction = Update Agiloft only, the
available Table update type options are Synchronize and Import.

Synchronize: Compares data and resolves conflicts using the options in the General tab.

Export: Only allows data to be exported from Agiloft to the external system for this table. This forcibly

overwrites external records and always request all data from Agiloft.

Import: Only allows data to be imported from the external system to Agiloft for this table. This forcibly

overwrites Agiloft and always request all data from the external system.

Example

Last sync was performed at 07:39am

Last modified time of Agiloft record (e.g. Agiloft_1.doc): 07:45am

Last modified time of the external system record (e.g. Agiloft_10.doc) at Salesforce 07:47am

The sync is run at 07:52am.

In this case, the record with external values (Agiloft_10.doc) takes precedence.

Last sync was performed at 07:39am

Last modified time of Agiloft record (e.g. Agiloft_1.doc): 07:45am

Last modified time of the external system record (e.g. Agiloft_10.doc) at Salesforce 07:47am

The sync is run at 07:52am.

In this case document Agiloft_10.doc takes precedence.

Last sync was performed at 07:39am

Last modified time of Agiloft record (e.g. Agiloft_1.doc): 07:45am

Last modified time of the external system record (e.g. Agiloft_10.doc) at Salesforce 07:47am

The sync is run at 07:52am.

In this case both the Salesforce and Agiloft systems has a duplicate of Agiloft_1 and Agiloft_10.

Table Update Type

Export and Import do not attempt to synchronize the records by matching values and resolving conflicts. Instead,
they simply overwrite all fields which are selected for mapping for the table.

The allowed operations restrict Create/Update/Delete operations for the tables in the internal or external systems.
These options are dependent on the sync direction, and if the direction does not permit an operation, the option is
disabled. For example, if Sync Direction = Update External System only, Agiloft Create, Agiloft Update, and Agiloft
Delete are disabled here and shown in gray.

Field Mapping table

Within each table, each individual field also has the option to be updated in Agiloft or the external system. As with
the Allowed Operations, these options are dependent on the sync direction. Depending on the field selections here,
the sync work in the following ways:

If Sync Direction = Two-way sync, and Allowed Operations = Agiloft Create/External Create, and Field A =

Update in Agiloft - then during sync, the field is created during the first sync, and not updated or removed if

the field value changes.

If Sync Direction = Update Agiloft only, and Allowed Operations = Agiloft Create/Update/Delete, and Field A

= Update in Agiloft - then during sync, the field is created in Agiloft during the first sync, and updated or

deleted whenever it changes and re-synchronizes in the external system.

Allowed Operations

Field Mapping

If two or more external systems are kept in sync with a given Agiloft Table - which means using two or more
different Sync Configurations - and if conflicts are resolved by preserving the most recent value, the results are
affected by the order in which the synchronizations are run.

Suppose an updatable field in the 3 systems XS A, XS B and Agiloft has the values and timestamps shown, and
we synchronize A with Agiloft, and then B with Agiloft at 4p.m:

XS A p (3p.m) => p (4p.m)
XS B q (2p.m) => p (4p.m)
Agiloft r (1p.m) => p (4p.m)

The first update changes Agiloft because 3 p.m. > 1 p.m, and the second changes XS B because 4 p.m > 2 p.m

But if we synchronize B first, and then A, the effect is:

XS A p (3p.m) => q (4p.m)
XS B q (2p.m) => q (4p.m)
Agiloft r (1p.m) => q (4p.m)

The first update changes Agiloft because 2p.m > 1p.m, and the second changes XS A because 4p.m > 3p.m.

This is because there is only one timestamp on each value in a pair, whether it results from sync or user updating.

Dual Synchronization Problem

	External System Synchronization

