
1.

2.

A working sample External System Adapter (ESA) is directly downloadable from within your Agiloft KB. It also
functions as an example for users who would like to develop their own ESA. Users may modify and reuse the
sample ESA code for their own use as desired.

While built for illustration purposes, the sample ESA is a fully functional ESA that syncs with a virtual external
system which is either co-located or running on an external server.

To demonstrate how the ESA works, the virtual external system includes two tables: 'Virtual Contacts', with the
fields ID, Full Name, and Email; and 'Virtual Cases', with the fields ID and Summary. The AgiloftEmployees table
will be mapped to Virtual Contacts and the Agiloft Support Case table will be mapped to Virtual Cases. Actual data
is stored in a file directory, using a Java properties format - plain for Employees/Contacts, XML for Cases.
Employees/Contacts files use the naming convention contact_123, where 123 is the record’s value in the ID field.
Similarly, Case files use the naming convention case_123.

The Sample ESA uses a single parameter, Work Directory (workDir), to hold the directory path for storing data files.
The value of the Work Directory parameter is input on the ESA Settings screen which appears once a connection
gets established, as per Step 11 below. Note that this directory will be a subdirectory of the initial sync Home
directory defined in Step 1 of the ESA builds.

Note that the synchronization process is nearly identical for both Windows and Unix systems, with only the directory
paths and therefore command line text being unique to each system. However, in the interest of clarity this manual
will show the Windows installation process.

Follow the guided steps to build a sample ESA.

Create a work directory:

Create a work directory named 'syncHome' on your local directory, for instance C:\syncHome. This will be

the directory where data and files are stored.

Note: the actual name of the directory is not important, but the rest of this guide will refer to the work

directory as syncHome.

Install the Java Development Kit (JDK):

Using the Sample ESA

Note that the Sample Remote Proxy code simulates running on a remote server that contains the remote
external system adapter and database. This is why this documentation refers to the external system and its
data tables as 'virtual' – there is no actual remote external system database and no actual remote external
system data tables. Those 'tables' and 'data' are pre-loaded in the Sample ESA bundle to make this
process easier to set up and understand.

Building a Sample ESA

1.

2.

3.

4.

a.

b.

1.

2.

a.

b.

c.

d.

e.

f.

g.

h.

i.

3.

Install the Java Development Kit (JDK):

Download and install the most current JDK: http://www.oracle.com/technetwork/java/javase/downloads/jdk8-

.downloads-2133151.html

Note the name of the JDK installer; for instance, jdk-8u112-windows-x64.exe. This will be used to update the

PATH variable.

Update the PATH variable to include syncHome and the JDK. See: https://www.java.com/en/download/help

./path.xml

Verify that the JDK was correctly installed:

Open the Command Prompt window by clicking the Start menu, typing 'cmd' and pressing Enter.

Type: java -version.

Configure the sync subsystem:

In your KB, go to to open the . Setup > Sync > New > External Sync Sync Configuration wizard

Add the following details:

Configuration Name - add a descriptive name such as MySync

external system Type - select Third-party Adapter from the drop-down

Select the Third-party ESA (Command Line) radio button

Select 1 for Command Line Parameters

Status - Enabled

Directions - Two-way sync

Conflicts - external system should take precedence

Remoting - select the external system Adapter runs remotely radio button. This will enable the

Download ESA Remote Proxy button.

The external system ID Prefix is system-generated and will be used by sync to connect to the ESA

Remote Proxy.

At this point, leave the window open while you complete the next sections of steps to set up the ESA

development package. Only when the package is ready should you click Next and proceed.

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.java.com/en/download/help/path.xml
https://www.java.com/en/download/help/path.xml
https://wiki.agiloft.com/display/HELP/Sync+Configurations

1.

2.

3.

4.

Download the Sample ESA development package and remote
proxy:

In the external system Type section of the Sync Configuration wizard, there is a link named "To download the

ESA developer bundle, click here." Click the link to download the sync-example.zip file.

Extract the zip file contents to your syncHome directory.

In the Remoting section of the Sync Configuration wizard, click the Download ESA Remote Proxy

button. This downloads the esa.jar file. The jar file is configured specifically for your system and contains

 Agiloftyour server name and external system ID.

Save the file to the syncHome directory.

The syncHome directory should now contain the following files and folders, which can be verified using the
Command Window. Type 'dir' to view the contents of the directory, or 'dir/p' to show one page on the screen at a
time:

File/Directory Name Description

com (directory) Contains example sources and a Java support library. The sample ESA code is in
the class, located in the com.supportwizard.sync.sampleesa.SampleEsa

 file in the directory.SampleEsa.java com/supportwizard/sync/sampleesa

commons-logging-1.1.1.
jar, FortifyAnnotations.jar,
log4j.jar, commons-
digester-1.8.jar

Libraries needed for the example.

make.bat, make.sh Build scripts for Windows and Linux, respectively.

run.bat, run.sh Run scripts for Windows and Linux, respectively.
Run.bat is invoked from Start_ESA.bat in Windows. Run.sh is invoked from
Start_ESA.sh in Linux.

META-INF (directory) META-INF in the example.

log4j.xml Logging configuration in syncHome/out.

in.txt, out.txt Input and output XML examples.

1.

2.

1.

2.

3.

esa.log Handles the remote proxy logging.

cl-esa.log Handles Agiloft sync subsystem logging.

sync.external systemd XML messages scheme in syncHome/out.

ESA_Developer_Guide.
docx

This document.

Start_ESA.bat This file needs to be in either the C:\Agiloft folder or its location in the user's PATH
environment variable. It is invoked by the sync subsystem to make the connection
with the ESA Remote Proxy in Windows.

Start_ESA.sh This file needs to be in either the /usr/local/Agiloft folder or its location in the
user's PATH environment variable. It is invoked by the sync subsystem to make
the connection with the ESA Remote Proxy in Linux.

Run the make.bat script:

In the Command Prompt window, in the syncHome directory, type This is a script make.bat and click Enter.

that executes several commands that are necessary for the sample ESA to function correctly.

Once the script has run, keep the command prompt window open and return to your browser.

Verify the Start_ESA.bat script:

The sync subsystem will call the script to execute to launch the Agiloft ESA. Start_ESA.bat run.bat

First, make sure that matches your configuration. Start_ESA.bat

Note that the file should be in the syncHome directory, and the location added to the user's Start_ESA.bat

PATH environment variable.

Start_ESA.bat expects that in Step 3 above you specified 1 for the Command Line Parameters number in
the external system Type section. If you chose a number other than 1, you must edit and Start_ESA.bat

change the PARAM value to match. If your ESA home directory is not C:\syncHome you must also modify
the path of the run.bat file:

set
/A PARAM = 1 - or = number of CL Parameters specified during configuration
IF
%1==%PARAM% cmd /c C:\syncHome\run.bat - or C:\your Sync
directory\run.bat

Varying the number of command line parameters will allow you to run multiple remote ESAs.

Check the ESA configuration and launch the Agiloft sync

1.

2.

3.

1.

2.

3.

1.

2.

3.

Check the ESA configuration and launch the Agiloft sync
subsystem:

At this point you should have walked through all previous steps and added all of the settings, with the Sync

Configuration wizard open in the browser. In the Sync Configuration wizard, click Next. This launches

the Agiloft sync subsystem and begin polling, where it will be waiting for a connection from the external

system Remote Proxy ESA.

While the system is trying to connect, in the Command Window enter and press java -jar esa.jar

Enter. This command tells the ESA Remote Proxy to connect to the Agiloft sync subsystem, obtain the

command to launch the sample ESA, and run it. You should see a success message similar to the following:

When you return to the browser window, the ESA Settings screen will have appeared, where you can set the

directory to store the synchronization data files.

Set the data storage directory:

In the directory, create a sub-directory named . This will be where data files are syncHome sampledata

stored following synchronization.

In the Work Directory field of the ESA Settings tab, enter .sampledata

Click Next to open the Mapping screen.

Configure sync table mappings:

The Mapping screen contains a list of the tables in the KB, which can be mapped to structures in the external

system. Here you can establish the relationships between Agiloft KB tables on the left, and external system

ESA tables in the drop-down list on the right. Note that the external system tables are 'virtual' in this

example, since there is no real external system or tables.

Begin by selecting Virtual Contacts from the Employee drop-down to map the Employees table to the Virtual

Contacts external system table, then click Map to open the Field Mapping screen.

In the Field Mapping screen, you can define the mappings between fields in your Agiloft table, and in the

selected external system table. In this example, create the following mappings between Agiloft and the

external system respectively:

3.

4.

5.

6.

7.

8.

1.

2.

3.

4.

5.

1.

2.

3.

4.

Email - Email. Select "Identifying" for this row.

Full Name - Full Name. Select "Identifying" for this row.

Employee ID - ID.

By default, the Use strict match for identification checkbox is selected.

Click Finish.

Next, select the Support Case table and map it to Virtual Cases, then click Map.

In the Field Mapping screen, create the following mappings:

Case ID - ID, with Update in External selected

Summary - Summary, with Update in Agiloft, Update in External, and Identifying all selected

Click Finish, then click Next to navigate to the Relation Mapping screen.

Configure the Relation Mappings and Running option:

The Relation Mapping screen enables you to map external relations to linked field sets in Agiloft. In this

case, the Customer relation will be mapped to the Employee(Cell Phone, User Company, Customer

Phone...) linked field set. This will reflect the relationship between Support Case-Virtual Cases and

Employee-Virtual Contacts.

Click Next to navigate to the Running screen.

Select Manual to specify the synchronization process initiation mode.

Click Finish.

The sample Remote Proxy ESA sync subsystem is configured.

This section describes how to perform synchronization between your sample ESA and your Agiloft KB.

Open the Support Cases table in the KB.

Go to .Actions > Sync > Run MySync

A dialog screen shows the progress of the synchronization. When the sync has completed, it displays a
success message with some links to view the log file and the records which were updated.

 Clicking the affected records link opens the Synchronization Results screen where you can view all of the

records which were created, updated or deleted between Agiloft and the external system.

Running Synchronization

If you need to re-sync using a clean synchronization, don't just delete files and re-run
synchronization. Doing so may result in propagation of deleted files, if this is permitted in the sync
configuration. To reset a full match history, edit your sync record and click the Resets Records
Peering button at the bottom of the Sync Configuration wizard.

The full Sample ESA source code is included in the file in the SampleEsa.java

 directory. See: com.supportwizard.sync.sampleesa.SampleEsa. syncHome\supportwizard\sync\sampleesa

This section will walk through the code in this document, and is Java-implementation specific. However, it is
recommended that you understand how the Sample ESA works even if you plan to use another language, since the
ESA logic will be the same.

The Javadoc comments for the classes and methods of the ESA are in the ExternalSystemAdapter.java document
at . syncHome\com\supportwizard\sync\interfaces\esa

SampleEsa

package com.supportwizard.sync.sampleesa;

import com.supportwizard.sync.interfaces.esa.*;

...

public class SampleEsa extends ExternalSystemAdapterBase {

...

If you plan to use the Java support libraries, your ESA class should implement the ExternalSystemAdapter
interface. This single interface contains all of the ESA operations. Some of them are only called under certain
circumstances. To have the full implementation of the auxiliary methods, extend the ExternalSystemAdapter base
class.

Logging

public class SampleEsa extends ExternalSystemAdapterBase {

 /**
 * Sample ESA uses log4j logger. You may use any other logger, such as java.
util.logging.Logger,
 * but DO NOT USE System.out for logging.
 *
 * Command-line ESA uses System.in and System.out to exchange XML messages with
sync core.
 * All non-XML output is omitted, so you will never see it.
 */
 private Logger log = Logger.getLogger(SampleEsa.class);

The Sample ESA works as a command line (CL) ESA. This means that its standard input and output can be used
for exchanging XML messages.

Do not print anything on the standard output. Use the logging facilities instead. By default, all the Sample ESA
logging goes into the file, and the Remote Proxy logging goes into the file, both in the home cl-esa.log esa.log

of the syncHome directory.

Sample ESA Code Description

The Sample ESA uses a single ESA parameter: a working directory location. In this case the name is .workDir

Work directory

// File location parameter
private static final String WORK_DIR = "workDir";

The following method returns the parameter metadata described for the sync core:

Metadata

public
List<EsaParameterMeta>getParametersMeta(Locale
locale) throws EsaException, RemoteException

This code inside the startSync() method uses the parameter:

startSync()

// Read work dir parameter value
List<EsaParameter> paramValues =
syncCoreApi.getParameter(externalSystemID,
WORK_DIR);
assert paramValues.size() == 1; // There must be a
single string (parameter type is TEXT, SINGLE).
String workDirPath = paramValues.get(0).getStrValue();254
assert workDirPath != null;

The line queries the sync core callback interface for List<ESAParameter> paramValues.... WORK_DIR);

the stored parameter value, passing the parameter name as a key.workDir

The method sets the ESA into a 'synchronization is running' state. startSync()

ESA Parameters

Sync State

Starting synchronization

public String startSync(String externalSystemID) throws EsaException,
RemoteException {

Most of the ESA methods are only called in this state. The ESA may connect to the external system in
, for example. The method is called before entering sync state. This is startSync() getParametersMeta

needed to ensure that the ESA parameters are properly configured before entering the sync state.

The sync state is ended with a call to the method:endSync()

endState()

public void endSync() throws EsaException, RemoteException {

The Sample ESA constructor does a one-time initialization which only sets up the logging. A single instance can be
used to run multiple synchronization cycles, so most of the initialization should probably be done by the

 method. startSync()

The ESA parameter values should not be queried in the constructor. The sync core callback interface has not yet
been set. Also, it is possible that the ESA parameter is not yet managed because was not getParametersMeta

called. Therefore, the parameter value query should only be done in the sync state.

The ESA returns information about external structures/tables, fields in each table, and relations between them,
using the following code:

External system structures

public Set<ExternalStructure>getStructureList(Locale locale)
...

public Set<ExternalField>getFieldList(String
structureOrCollection, Locale locale)

...

public Set<ExternalRelation>getRelations(String
structureOrCollection, Locale locale)

Note: the term is used to highlight the fact that, physically, this could be almost anything: a database table, structure
a file, an object-oriented database, and so on.

Metadata

ExternalStructure.name, returned from , is a logical structure name. It is later passed to getSructureList

, , and other calls. Similarly, and getFieldList getRelations ExternalField.name ExternalRelation.id

are local fields and relation names which are used in the structure and passed to CRUD ExternalRecord

methods.

The ESA is queried on external records using these methods:

Querying the ESA

public Set<ExternalRecord>getModified(final String structure, final Date after)
...

public ExternalRecord read(String structure, String pk)

...

public Set<String>getDeleted(String structure, Date since)

Please read the methods' Javadoc comments for implementation details.

The method might be hard to implement: getDeleted public Set<String>getDeleted(String

. See the Javadoc comments for possible strategies.structure, Date since)

Note: structure is a structure logical name, as returned from the method. In addition, if the getStructureList()

after timestamp in is null, this means 'return all records'. Usually it has a null value on the initial getModified

synchronization, or after a Reset Records Peering is executed.

External records are manipulated through these methods:

Data Reads

Data Updates

External record manipulation

public ExternalRecord create(String structure,
ExternalRecord values)
...

public Date update(String structure, Date lastSeen,
ExternalRecord values)

...

public void delete(String structure, Date lastSeen,
String pk)

Please read the methods' Javadoc comments for implementation details.

Note: the parameter is used to implement optimistic record locking. If this fails, throw lastSeen

.OptimisticLockFailureException

Exceptions are reported using a <result> tag with a nested <exception> element.

<exception type="general | record | configuration|alreadyconfigured
|optlockfailed | concurrentdelete">
<message>Exception message to be shown to user</message>
<trace>Exception message to be put to logs</trace>
</exception>

Exceptions of type and should also have a nested tag:optlockfailed concurrentdelete

<configured-to>External ID, to which ESA is configured to</configured-to>

Exceptions of type and should also have nested tags:optlockfailed concurrentdelete

<external-id>record ID</external-id>
<modified-at>record ID</modified-at>

These should contain exception stack trace or some other diagnostic information (FILE/LINE, etc) which would
allow ESA developer to investigate the problem better.

All 'legal' ESA exceptions are derived from the class.EsaException

The generic is fatal and aborts the synchronization.EsaException

Exceptions

EsaRecordException, in contrast, does not abort the whole synchronization and just marks a single

record as failed.

OptimisticLockFailureException is used to implement optimistic locking for the time between when a

record is read, using or , and the time it is updated. If it fails, the synchronization cycle getModified read

will repeat.

All unexpected exceptions, other than , abort the synchronization. EsaException

Some messages have a Locale argument, which is a locale and country code, as described in the ISO-639 and ISO-
3166 - <language-code>- <country-code>- <variant>. Examples are "en_US", "ru_RU" and "pt_BR". If the ESA
doesn't support the required locale or doesn't support localization at all, it should return an American English label
and hint.

Locale

	Using the Sample ESA

